Exercise 42

Two carts, A and B, are connected by a rope 39 ft long that passes over a pulley P (see the figure). The point Q is on the floor 12 ft directly beneath P and between the carts. Cart A is being pulled away from Q at a speed of $2 \mathrm{ft} / \mathrm{s}$. How fast is cart B moving toward Q at the instant when cart A is 5 ft from Q ?

Solution

Draw a schematic of the carts at a certain time.

The aim is to find $d x_{B} / d t$ when $x_{A}=5$. There are two right triangles, and the Pythagorean theorem holds for each of them.

$$
\left.\begin{array}{r}
r^{2}=x_{\mathrm{A}}^{2}+12^{2} \\
(39-r)^{2}=x_{\mathrm{B}}^{2}+12^{2}
\end{array}\right\}
$$

Subtract the respective sides of the first equation from those of the second equation.

$$
\begin{aligned}
(39-r)^{2}-r^{2} & =\left(x_{\mathrm{B}}^{2}+12^{2}\right)-\left(x_{\mathrm{A}}^{2}+12^{2}\right) \\
\left(1521-78 r+r^{2}\right)-r^{2} & =x_{\mathrm{B}}^{2}-x_{\mathrm{A}}^{2} \\
1521-78 r & =x_{\mathrm{B}}^{2}-x_{\mathrm{A}}^{2}
\end{aligned}
$$

Solve for x_{B}.

$$
\begin{aligned}
x_{\mathrm{B}}^{2} & =x_{\mathrm{A}}^{2}-78 r+1521 \\
x_{\mathrm{B}} & =\sqrt{x_{\mathrm{A}}^{2}-78 r+1521} \\
& =\sqrt{x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+12^{2}}+1521}
\end{aligned}
$$

As a result,

$$
x_{\mathrm{B}}=\sqrt{x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521} .
$$

Take the derivative of both sides with respect to time by using the chain rule repeatedly.

$$
\begin{align*}
\frac{d}{d t}\left(x_{\mathrm{B}}\right) & =\frac{d}{d t}\left(\sqrt{x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521}\right) \\
\frac{d x_{\mathrm{B}}}{d t} & =\frac{1}{2}\left(x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521\right)^{-1 / 2} \cdot \frac{d}{d t}\left(x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521\right) \\
& =\frac{1}{2}\left(x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521\right)^{-1 / 2} \cdot\left[\left(2 x_{\mathrm{A}}\right) \cdot \frac{d x_{\mathrm{A}}}{d t}-\frac{78}{2}\left(x_{\mathrm{A}}^{2}+144\right)^{-1 / 2} \cdot \frac{d}{d t}\left(x_{\mathrm{A}}^{2}+144\right)\right] \\
& =\frac{1}{2}\left(x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521\right)^{-1 / 2} \cdot\left[\left(2 x_{\mathrm{A}}\right) \cdot \frac{d x_{\mathrm{A}}}{d t}-\frac{78}{2}\left(x_{\mathrm{A}}^{2}+144\right)^{-1 / 2} \cdot\left(2 x_{\mathrm{A}} \cdot \frac{d x_{\mathrm{A}}}{d t}\right)\right] \\
& =\frac{1}{2}\left(x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521\right)^{-1 / 2} \cdot\left(2 x_{\mathrm{A}} \frac{d x_{\mathrm{A}}}{d t}-\frac{78 x_{\mathrm{A}}}{\sqrt{x_{\mathrm{A}}^{2}+144}} \frac{d x_{\mathrm{A}}}{d t}\right) \\
& =x_{\mathrm{A}}\left(x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521\right)^{-1 / 2} \cdot\left(1-\frac{39}{\sqrt{x_{\mathrm{A}}^{2}+144}}\right) \frac{d x_{\mathrm{A}}}{d t} \\
& =\frac{x_{\mathrm{A}}}{\sqrt{x_{\mathrm{A}}^{2}-78 \sqrt{x_{\mathrm{A}}^{2}+144}+1521}} \cdot\left(1-\frac{39}{\sqrt{x_{\mathrm{A}}^{2}+144}}\right)(2) \tag{2}
\end{align*}
$$

At the instant that cart A is 5 feet from Q, the rate of change of x_{B} with respect to time is

$$
\left.\frac{d x_{\mathrm{B}}}{d t}\right|_{x_{\mathrm{A}}=5}=\frac{(5)}{\sqrt{(5)^{2}-78 \sqrt{(5)^{2}+144}+1521}} \cdot\left(1-\frac{39}{\sqrt{(5)^{2}+144}}\right)(2)=-\frac{10}{\sqrt{133}} \frac{\mathrm{ft}}{\mathrm{~s}} \approx-0.86711 \frac{\mathrm{ft}}{\mathrm{~s}} .
$$

The minus sign indicates that the distance x_{B} gets smaller as time goes on. Therefore, when cart A is 5 feet from Q, cart B is moving toward Q at a speed of about 0.86711 feet per second.

